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Random Perturbations of Some Special Models

In this paper we shall study the convergence of

invariant measures for random perturbations of maps of an

interval and a Lorentz's type model dynamical system.

These models lack the shadowing property for some

pseudo-orbits. Misiurewicz's map treated in Section 2 is

also not uniformly expanding. However, we shall see how to

modify the approach of [Ki] in order to overcome these

complications.

1. Random perturbations of one-dimensional

transformations.

In this section we shall discuss models of random

perturbations of maps of an interval. We shall treat

specifically the case of the Lasota-Yorke (LaY] piecewise

smooth expanding transformations.

Suppose that F:[O,I]-*[0,1] is a map of the unit

interval M=[Ol] into itself. Random perturbations Xn' " n
of F are being defined in the same way as in [Ki] and [KK]

though we shall impose certain restrictions on measures Q6
6X

and transition probabilities P6(x,.) appearing there. We

shall be interested in the weak convergence of invariant

measures p of Markov chains X6 withn

transiton probabilities P (x,'). In the same way as in

"I. '



[Ki] and [KK) we shall assume that all Q6 *have densities
x

q

with respect to the Lebesgue measure on M = [0,1], i.e.,

for any Borel set r C M,

i. 6

,1"

and so P6 (x,-) = Qx (") has the density

p (xy) = q6 (y). (1.2)

Before we proceed with our further assumptions let us

discuss first another model due to Boyarsky [Boy] and

considered later also by Golosov [Gol] and Collet [Col].

They assume that q6(y) = q6(y-x), i.e., this density

depends only on the difference (y-x). In view of (1.1)

and (1.2) any invariant measure pa of X6 has a density
n

p with respect to the Lebesgue measure which satisfies

the equation

p (z) f Pa(x) pa(x,z) dx, (1.3)

M

and so if qx (y) = q6 (y-x) then

pa (z) = p e(x) q6 (z - Fx) dx (1.4)

M

Sp
6 (x) IF (x)1 q a(z - y) dy

M xEF- y I

provided the derivative F' (x) exists for almost all with

respect to the Lebesgue measure points x C M = [0,1].

Introduce the operator 0 acting on integrable functions



g on [0,1] by the formula

Sg~y W g ((gF' ( x) 1 ) (1.5)

which is called the Frobenius-Perron operator of the map F.

This operator describes the transformation of the density

of an absolutely continuous measure under the action of F,
dv

i.e., if g = d, ve (M) then Og is the density of the

measure such that C(F) = v(F-F) for any Borel set

FCM. Thus if there exists an absolutely continuous

F-invariant measure then the density of this measure must

be a fixed point of the operator 0. Vice versa any fixed

point of 0 which is an integrable function turns out to

be the density of an absolutely continuous invariant

measure. By this reason the study of the Frobenius-Perron

operator plays a decisive part in many works concerning

absolutely continuous measures of one-dimensional

transformations (see Lasota and Yorke [LaY], Misiurewicz

[Mi], Collet and Eckmann [CEl] and [CE2]). 'U

Define another operator 9 acting on integrable

functions by the formula

6 g(z) = f (Og(y)) qe(z-y) dy (1.6)

M

which may be called the Frobenius-Perron operator of random

perturbations. In view of (1.4) and (1.5) the density p

is a fixed point of the operator 6 whose explicit

representation (1.6) in a convolution form enables one to

obtain uniform in a estimates of its fixed points

essentially in the same way as one estimates variations of

fixed points of the operator 0 itself. By this technique

Boyarsky [Boy], Golosov [Gol], and Collet [Col] showed for

certain types of maps F that limits of invariant measures

11 of 4 as a-*0 must be absolutely continuous.n
Moreover, by this method one can show the convergence of

. I II I . .. .



the densities p6, as well. However, the condition

qx (y) = q (y-x) is rather restrictive and, as we shall
x

see, it excludes interesting models where Xn is obtainedn
by means of a composition of maps chosen independently at

random from a parametric family. Besides, the above

approach cannot be generalized to arbitrary manifolds.

Next, we shall specify our conditions which are a

one-dimensional version of Assumption II.1.1.

Assumption 1.1 (a) Transition probabilities of Markov

chains Xn have the form p&(z,•) = & (" ) with Q'

satisfying (1.1);

(b) There exist constants a, C > 0, a < 1 and a family of

non-negative functions (rx(E), xEM = [0,1, ECRE =(

such that

-- Edist(x,y)
q (y) Ce- e 6 for all x,yEM, (1.7)

where

dist(x,y) - min(jy-xj,jy-x+lj,jy-x-lI), (1.8)

and

6 -i
q 6(y) r ( eU r (.1 a(x,y)) (1.9)

provided dist(x,y) e 6
1 - , where o(x,y) equals one of

the numbers (y-x), (y-x+l), or (y-x-l) so that

Ia(x,y)I = dist(x,y);

(c) The functions rx (f), xEM, fERI satisfy

(i) f rx(E) df = 1,

IR1

(ii) rx (f) C e-a 1 for a, C>0

independent of x and f,

• . ' ~ IL. . .. .* -me,



.% , . . . , . , . , . 17 K- 77. ,7

(iii) There exists C>O such that if
v+ +

- {v:rx( ) > 0} and aV (6) denotes the 6-
+ x

neighborhood in R' of the boundary OV+ of V+
x xthen

rx (E) dE C6, (1.10)

av +(6)
x

and

rx(f) ry (r) + Cp + 8V+(Cp) (f)rx(f) (1.11)

where p = p((x,f),(y,f)) = dist(x,y) + IC-El

Remark 1.1. The definition (1.8) of the distance

means that we consider the periodic boundary conditions,

i.e., that we identify the endpoints 0 and 1. Another

boundary condition which can be treated by our method is

the reflection condition in the endpoints 0 and 1. This

means that (1.9) remains the same for either

1-a, 1-a 1-ax E[e-, 1-e-] or x < e and y x or x >l-

and y x. But if x < E and y < x then one assumes

qx (y) (r + rx _ ))-i < 1 + a (1.12)-

and if x > 1- 1 -a and y > x then

q (y ) (rx + r 1 + 6 (1.13)

In this case (1.7) should be replaced by

qx (y) Cc exp(- a ly-xj) (1.14) ..

x.



1-a 0
if Iy-xI > e and e > 0 is small enough. We can treat

also the situation when dist(x,y) = Ix-yI and q' (y)

equals zero unless x 6[0,1] and y belongs to an open

neighborhood U of [0,1]. This must be complemented by

the condition FU C [0,1] which yields Markov chains Xnn

defined on U. Boundary conditions do not influence

decisively the study of corresponding random perturbations

and related proofs differ only in details.

In this section we shall work with transformation •

satisfying the following conditions.

Assumption 1.2. A map F is piecewise C2  and

expanding, i.e., there exist points 0 =o<a,<...= 1 ,=
such that the restrictions of F to the open intervals

(a. , ai), i = 1,---,v + 1, v 1 are c2  functions

which can be extended to the closed intervals [ai_, ai] as

C 2 functions (taking at the endpoints right or left

derivatives), and

infF' (x) I = X > 1 (1.15)
x

where the infinum is taken over all x C[0,1] for which

the derivative F'(x) exists.

Under Assumption 1.2 F is known to have invariant

measures which are absolutely continuous with respect to

the Lebesgue measure on [0,1] (see Lasota and York [LaY]

and Cornfeld, Fomin, and Sinai [CFS], § 4 of Chapter 7).

Li and York [LiY] showed that in the above situation there

exist at most v ergodic absolutely continuous F-invariant

probability measures. In particular if v = 1 then one

has only one absolutely continuous F-invariant probability

measure.

In order to avoid certain complications we shall

assume that F is continuous with respect to the metric tI
defined by (1.8), in particular, F(0) = F(1). We shall
establish the following result. 1

S
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Theorem 1.1. Suppose that random perturbations X6 F
n

of a map F:[0,1] [0,1] meet the conditions of Assumption

1.1, F is continuous with respect to the dist-metrtc, and

F satisfies Assumption 1.2. Then all weak Limits as e-)

of probability invariant measures Ae of Markou chains Xn w~

are absolutely continuous with respect to the Lebesgue

measure [0,1]. In particular, if v = 1 in Assumption 1.2

then the invariant measures ji weakly converge as e-+O

to the unique absolutely continuous F-inuariant probability

measure 11.

Before the proof we shall discuss certain points

connected with Theorem 1.1 for the one-parameter family of

tent maps

,sx if 0 £ x <

x= if (1.16)
s s(l-X) if x < 1

where 1 < s 2. These maps meet conditions of Assumption

1.2 with v 1 and a . First, notice that in
general these maps do not have the shadowing property.

Indeed, let F = Fsr . Then c = 2-V2 is a repelling fixed

point of F and F'(1) = c. Take the 6-pseudo-orbit x°

x, = Fx, x2 = Fx1, x3 = c, x4 = c+6, xs = F(x 4 ),---,

Xk+ 1 = FXk,''", k = 4,5,---. Consider the interval

I = (X:lx - -1 1 !(3-2v5)) then F3 (I) is the interval whose
2 4 5

left endpoint is c, and so F4 (I) is the interval whose

right endpoint is c. Hence if y c I then x4 > c > F'y.

sXk+l - Fk+lyj = Vr2Ixk - Fk y for k _ 4 provided

1 1F
x X2 and F y 2-- we conclude that the orbit

of y cannot shadow in any reasonable sense the 6-pseudo-

orbit x0, x1, x2 ,*** when 6 is small enough. Therefore

we shall need some substitution for the shadowing property

when proving Theorem 1.1.



For the family of tent maps Fs, 1 < s 2 we can

consider the following model of random perturbations.

Suppose that 1 < s < 2 and let 4, v b .. e

independent random variables with the same uniform

distribution on the interval [-e,e] where 0 < e eo <

min S-l, (So) Consider the Markov chains

X = F o...oF x (1.17)n s e + e
0+n 0 1

1 1

Let a = sO (l so + e))-e and b. = I(s + e) then
e 0 2 e 21

0 < a < < b < 1. Moreover if x E [a6, b] then
6_ 2

Xn e[a ,b for all n = 1,2,---. Thus we can study then e a

invariant measures of Xn on the interval [a ,b].

Notice that transition probabilities of Markov chains Xe
n

have the form

pe(x,r) = fx(Y) dy

r
where

S So(2ez) -  if ly-zI ezs 1

qe (y ) = 1 0 (1.18)
z 0o if ly-zi > ezs0

Thus this type of random perturbations considered on

[a6 , b6 o] with e < eo  satisfy conditions of Assumption

1.1 and an application of Theorem 1.1 yields that invariant

* measures A of Xe  on [a, b ] weakly converge as
n 6o "

e - 0 to the unique F -invariant absolutely continuous
s 0

probability measure. Remark, that qz (y) given by (1.18)

depends essentially on z, and so it cannot be represented

as qe(y-z).

Hence the Boyarsky's approach based on the Frobenius-Perron

tW.



operator and described at the beginning of this section

does not work in this situation. If so= 2 then the above

type of random perturbations formally does not satisfy

Assumption 1.1 since in this case we cannot exclude the

point 0 which is the fixed point for all Fs, 1 < s < 2,

and so P (0,-) will not have density at all. Moreover, N

the unit mass at 0 is the invariant measure for any X nN

e > 0, and so Theorem 1.1 is not true, as stated, on the

whole interval [0,1]. However, if so = 2 and e, 21

..- are independent random variables uniformly distributed

on [-e,O] with e > 0 small enough, then a careful study

by our method of approaches of XE  close to 0 yields thatn

invariant measures p6 of Xn having no atom at 0n
weakly converge as ae-o to the Lebesque measure on [0,1]

which is F2 -invariant.

Next, we shall prove a version of the shadowing

property which will be sufficient for our purposes.

Lemma 1.1. Suppose that xo, x1 , x2,***,xn ts a
6-pseudo-orbit, i.e., (1.4.1) holds true with dist defined

by (1.8) and 6 small enough. If

min min dist(xi,aj) 6(X-l) -  (1.19)
0 i~n-l 0 j~v+l

W1th ao,---,a+ 1  introduced tn Assumption 1.2 and X from

(1.15), then there extsts a point y E[0,1] such that

dist(F y, xi) 6(X-) - I  for all i = 0,'-,n. (1.20)

Proof. Notice that the failure of shadowing which we

exhibited in the case of tent maps is due, in fact, to the

existence of points in [0,1] having no preimages. But

under our conditions a 6-pseudo-orbit may contain such

points only if it contains also points close to a,j =

0,---,v+l which we prohibit. By this reason if (1.19)

holds true then for any k = 0,1,--.,n-1 the interval J

kI
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c- .,i . . -; -
-

= {z: dist(z,xk) < 6(X-1) - 1  contains a connected

component of the set F- 1J k+ provided 6 is small

enough.
n -Then the intersection n F-kjk  is not empty and any

k=0
point belonging to this intersection can play the role of

y in (1.20). a

Next, we proceed as follows.

Lemma 1.2. There exists C > 0 such that for any
-Y > 0, -r < 1, each x E[0,1], and an interval Q C [0,1]

one has

Io(e lF ,n,x,Q) < C mes Q (1.21)

provided (log 6)4 > n > (log E)2 and a is small enough,

where mes is the Lebesque measure on [0,1] and
IF(p,n,x,F)=P ( min min dist(X6,aj) and X6 EF).

x 0k~n-1 Oj v+l-

Proof. We employ the same arguments as in [Ki] for

the case of expanding transformations. Put

II (  6 6P~ds(X 6
I (p,6,n,x,f)=P (dist(FX ,X e) < 6 and (1.22)

1x k' k+l

min min dist(Xk,aj) p and x6EF).
0<k<n-l 0<jv+l k n

Then similarly to Lemma II.1.1 it follows that

I' ,F n,x,Q)-Ii(F F- ,n,x,Q) l (1.23)
011

< (mes Q) exp(- a/3E6)

provided e is small enough.

If mes Q e 6 then one can choose points v .-. ,v8

6 -N

% , % ~ %%% %.% "



such that

Q C U U (vi) and mes Qmes U(vi) (1.24)
l ieelie""

where U (v) = {w: dist(w,v)<p).
p

If mes Q<e then we put e = 1 and take Q itself in

place of U (V . Thus

(ae 1-1 £ (- I- nxU (vi)). (1.25)
( ,i- ,-, n, x,Q) 1 1 , nxU -

61-'r 1-13

The probability 1(6 , ,n,x,UF (vi)) involves1n 1whc

only el- -pseudo-orbits w = (x,,.--ix ),  x which
do not approach the points aj,j = 0,-*,v+l closer than

61 , and so if -r > P, say -r 3P, and 6 is small
w)

enough then we can employ Lemma 1.1 to find a point y = y-

whose orbit shadows this e pseudo-orbit in the sense of

(1.20) with 6 = I-. We proceed in the same way as in

the proof of Theorem 11.4.1 by choosing points z ijk , j

-213
62 +1 such that one point zik is taken in each

cinrc
connected component of the intersection

(Uje(x) \ U.0-l)e(x)) n F-n U6 (vi) . Since n > (log e)2

then we conclude similarly to (11.4.14) that

II el3 e - n,x,U.(vi)) < (1.26) .%

61-2p3S 12( I2,n,x,z ,U (vi))
j _ 2 1 ,k ijk'

where the sum is over z such that the orbit

F zijke=0,...- ,n does not approach the points

aj, j=O, -• •,+l closer than e , and

9,

ft.

ft *ft .. *~ ft ~ ft~ ft~ 9? ' - * ~tk~ * S~ t 9".ft .t



12 (pnxzr)=P x (dist(X , Fz) p for all t=O,---,n (1.27)

and Xe F

Up(FZ) U (F n-z) U (F nz)nF

qFX (yl) • ••qF'n (Yn) dYl-.- dy.,'

Let 23 < a then by (1.9) taking into account that the

o-2artz11orbit of z zijk stays e -apart from 0 and 1 we

obtain that

1I2( - n,x,z,U (vi)) U fle~ 2Fz (1.28) I

1U i- 1 (Fz)

rFX

U I 1-2 (Fn -z) U 2(FnzfU 6J)

ry[Y aF y l]  F Y- dy I .. -dy n .  "
-I 2 -i n-1 YnI .

Since F has a bounded second derivative apart from.,

the points aj,j=0,---,u+l and intervals (y,,F z) do not

contain these points then .

lye+,- Fye (Ye+l- e+ )+F' (F ez) (y, Fz)j 2-5 (1.29) ,

provided E is small enough and e =0,o o o ,n - 1 . Next, we X

set Tj =Ye- F z and replace in the right hand side of "'.-%

rF'7FZF T
[YFY ] -1[]n'-l

(1.28) each ry Y+-Y by r:

6 Fye e r~ 66 d 1  d~

rFe+l z I .,. +which acccording to (F.hs) and (1.29) may decrease the rom

right hand side of (1.28) by no more than a positive power

of v provided 0 < < u In view of (1.15) we can

se5.-8 .F

z". - .. an rea in the right handside"of



employ the one-dimensional counterparts of Propositions

11.2.1 and 11.3.11 to derive (1.21) from (1.28) and the

above arguments precisely in the same way as in the proof

of Theorem 11.4.1 using obvious simplifications due to the

one-dimensional situation. 0o

To complete the proof of Theorem 1.1 we shall need the

following result which enables us to estimate the

probabilities of arriving to small neighborhoods of the

points a,j=O,---,v+l which we had to exclude in Lemma

1.2.

Lemma 1.3. There extsts C > 0 such that tf I > 0

ts smalA enough then for any x,y C[0,1] and k log(-)

P (k,xU l_,(y)) -C (1.30)

Proof. By the Chapman-Kolmogorov formula for any

t< k one has

P (k,x,U M(y)) = f PC(k-e,x,dz)PE(e,z,U _(y)) (1.31) Fl

[0,11

sup PC (E,z,U ir (y))
zE[0,i] 1

band so if (1.30) will be proved for k = t then it will

remain true for any k R.

Without loss of generality we can assume that X > 2

in (1.15). Indeed, we can always choose an integer r > 0

such that X > 2 and then pass to Markov chains Y6 = Xr
n nr

rwhich are random perturbations of the map F satisfying

Assumption 1.1 since F is Lipschitz continuous. The

assertion of Lemma 1.3 proved for Y6  will imply then

desired assertion for XC itself. Thus we assume thatk
X >2.

Under Assumption 1.2 we have

S[o
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supIF' (x) l = D < w (1.32)
x

Put

e = [ P(log(D + 1)) log(F-)] (1.33)

where 1 > 1 > 0 and [-] means the integral part. Then

(D + 1)e+ l K e- 3/2 (1.34)

In the same way as in the previous lemma we can pass 6,

to a 1-0-pseudo-orbits making only a negligible mistake in

our estimates. In view of (1.32), (1.34), and the

continuity of F every e 1 -p-pseudo-orbit yo = x,y1 , """,Y2

satisfies

dist(F ix,Yi) < e 1 - 2  for all i=0,1,---,e (1.35)

We shall introduce points zii=O,---,e by setting1i
i i 1-213

zi = Fix if0 ~ m dist(aj, x) i2 and z. = a.

if dist(aj,Fix) < 6i-21. For 6 small enough these

define points z. uniquely. By (1.35),

1-2

max dist(zi,yi) < 26123 (1.36)0o ie -.

Oie

but for zi  F x we have a better inequality (1.35).

Thus taking into account (1.7), (1.9), and the Chapman-

Kolmogorov formula we can write

P (e,x,r) I3(e,x,r) + exp(-a/3e) (1.37)

where 21 < a,

k7

a.



' a P (XCEU(i) for all i=O,l,---,e and X~eF)(l.38)
3 x •

.. .q e (Y2)''"q (Ye)

u ( )  u(v - 1 ) u(-3)nrF

1 1 aF~,

proo ofyemm 1. n (1 2)sne thfe- rvative ofI

u(O) u(-) u(h)nr t

× -1r  a(y,2 - 1 a(FY,_l,y,)

r va o a • , r dyPut d ye

where U( i ) = Iv: dist(v,zi) < If- 2 if z 0 and and

U ( i ) = (v: dist(v,z i ) < 2a I - 2 } if z i fo F i sx.
We cannot proceed precisely in the same way as in the

proof of Lelmma 1.2 using (1.29) since the derivative of F
may have discontinuities at the points ajij=0,---,v+l. %

Let F+(zi) and F'_(zi) be the right and the left :.

derivatives of F at zi , respectively. Put i=Y- '

b i  = Zi+ 1 - Fz i , A(71i )  = F+(zi) if 77i  0 and A(7i)=7
F'(zi if n i  < 0, i -- 0,---,e. Then for e small

enough and yi E U(i), i = i,---,e one has

Ia(Fyiyi+l) - ni+l + A(ni)ni - bil a25' (1.39)

V"

i = 0,-.-,e-i since by our choice of the points z. the
C2-%

map F can be extended as a C function into each closed

interval [yizi]"

Replace in the right hand side of (1.38) each
r~yi [

( F y i ' y i + I ) . by [ i + l - A (
Ti ) 7 i + b i ]

r by rFy. zi+1

According to (1.11) and (1.39) this substitution may

decrease the right hand side of (1.38) by no more than a

positive power of 6 provided 1 < These will lead to5I



an expression which can be bounded by the integral

I(e,x,r) =J*.f f e-1 rzL~~O
IR I IRI r

x e rz[Tl2 A(T1) 1+b1 (1.40)

Define inductively

-k+l = A() + eek+l bk (1.41)

where = 0 and 01.2.--- are independent random

variables with the distributions

E k = f r (TI)d7 (1.42)

It is easy to see that k k= 0,1,** is a nonhomogeneous

Markov chain whose transition density from = k to

-k+1 has the form a r Z [k+1l ] I Thus

IF(e,x,r) = P(=- E r) . (1.43)

By (1.41),

e -l -- l

= A(='_) ..'A(=')(k- b ) + 69 - bI. (1.44)

k=l

For any sequence x = (Kie 1  P =± of +1 and -1

we put Bi(K) = F+(zi) if Ki = +1 and Bi(K) = F(zi)

if K . = -1. Denote also
1



-( = _k) ( k-e -) +(1.45)

k=1

since by (1.15), jBi(K)j for all i and we .

derive in the same way as in the proof of (II.27 that -

P(e (K ) E- -Rmes Ir (1.46)

for all (K = ( '''''-i)" Then we obtain .

P(=e r )< P(-=e ( ) r) c-2 mes F (1.47) "

Since we assume that > 2 then taking u 1 --,(y )  and 'm'

"~.

VE

efrom (1 33) we derive (1.30) from (131), ( 37), and

the arguments following after (1.37) together with (1.43)
and (1.47), provided i > 0 is small enough an

Now we can complete the prooof Theorem 1.1. Fromtha

Lemma 1.3 and the Markov property it follows that

pa mi min dist (Xkaj) < eI -  Cne'y (1.48)
n~k log V+l j>0" o

Thus taking n = n(e) = [2(log )]and e R ()= .

(log 1] + 1 we obtain from (1.21), (1.48), and the Markov,' '

property that for any interval Q C [0,1i], :

P (n)x,Q) pex C Q and  rain min (1.49)

x " n 1"-.9
n~kzlog(1)ulj0.".

dist( m,a + 6 /2 P ( U,x,dy)

.9.

a e Ft- in-g,y,Q) + (1.7C mes Q + with (.3

ap0l

No w

L 1 a e v o y o s

mm n --v . (1.48

'.I



provided e is small enough. Hence for any invariant

probability measure WE of XE  one hasn

(Q) = J dj(x) P (n,x,Q) C mes Q + /2 (1.50)

[0,1]
which being true for any interval Q C [0,1] implies the

assertion of Theorem 1.1. a

Adapting the arguments of Section 2.6 to the one-

dimensional piecewise C2 and expanding maps F in the

same way as above one obtains the entropy convergence

result provided v = 1.

Theorem 1.2. Let 1 = (Q1,.--,Qk) be a partition of

[0,1] into intervals with sufficiently small lengths and

suppose that v = 1 which means that invariant measures
6 X6
F_ of X weakly converge to the unique absolutely

n
continuous F-tnvartant measure i. Then

lim h'(E,C') = h (F) (1.51)
6-0

6
where is the partition of the sample space Q into

the sets €= w: X0 E Q.), hW(F) is the entropy of F

relative to the measure i, and h (8,C6 ) is the entropy

of the shift transformation 8.

2. Misiurewicz's maps of an interval.

In this section we shall discuss certain points

concerning random perturbations of one-dimensional maps

satisfying Misiurewicz's conditions from [Mi]. For the

detailed exposition we refer the reader to Katok and Kifer

[KK].

We shall consider random perturbations Xn satisfyingn
Assumption 1.1 of maps F of the interval having a



non-positive Schwarzian derivative, no sinks and future

orbits of critical points staying away from critical

points. We shall restrict ourselfs to the most widely

considered one- parameter family of maps

F x - 4Xx(l-x) (2.1)

for which the above conditions are satisfied for a set of

parameters X having cardinality of the continuum.

Assumption 2.1. The map FX has the form (2.1), it

has no stable periodic orbit, and

1 n 1
C X = U F ( ) (2.2)n 1

According to Misiurewicz [Mi] any map F satisfyingX
Assumption 2.1 possess exactly one absolutely continuous

invariant measure F which is ergodic.
XI

The following result was proved in Katok and Kifer

[EKK.

Theorem 2.1. Suppose that random perturbattons Xen

of the map F meet the conditions of Assumption 1.1 and

F satisfies Assumption 2.1. Then inuariant measures ,X
of Xn weakly conuerge to WF as e -* 0.

nFX

Example 2.1. Similarly to the previous section we can

consider the following model of random perturbations

satisfying our conditions. Let i, 2, • be independent

random variables with the same distribution having a smooth

density p(x) concentrated on [-1,1]. Suppose that No

is a fixed parameter such that < No < 1 and the map

Fk X satisfies the above conditions. Then for E < l-No
0

the composition of independent random transformations

F i=i,2,.-- generates a Markov chain

X n F NO+nO..nOF X Ix which, considered on the

invariant interval [4X (O+) (l-Xo-e)-e, \o+e], belongs to

• -%



the class of random perturbations satisfying our

conditions. The case X0 = 1 must be studied separately

since then we cannot exclude from the consideration the

point 0 which is fixed for all F . The transition

probability of Xn can be written in the form! n

PE(x,F) = P{FXo +e xEr) = PeFp i E(x(l-x))- ir - X 0 ) (2.3)

= (4Fex(l-x))- 1fj p[.! [4~x - X0 )) dy
F

Thus the transition density p (x,y) = (4ex(l-x)) 1

*[y 4 ix-F~x ] edd

L [.1x1J does not have the form q6(y-Fo x) needed

for an application of the Frobenius-Perron operator method

described at the beginning of the previous section.

Remark 2.1. The stability of measures g F with

respect to random perturbations is especially interesting

in view of the fact that in general there is no stability

with respect to deterministic perturbations in this case.

Indeed, consider Fk  with X close to 1. Clearly, F

satisfies Assumption 2.1 and it has absolutely continuous

invariant measure with the density 1 (x(l-x))-i/2 Put

n 1 1 n1nX = min(n>l: Fx() ). Since FI( ) = 0 for all n>l

nt 1 1
then if FX (-) > by the continuity one can find 3(N)

such that 1 > O(X)>X and Fn ( = 1 Hence is a
13 (X) 2 2 2

periodic point of F,(,) and its orbit is attracting since

F( ) = 0 for any X. Thus we obtained a sequence kT 1

such that any F X has an attracting periodic

1orbitcontaining and only one point of this orbit can be

to the right of The invariant measure v supported
2 s pk

by this periodic orbit is stable with respect to random



perturbations since the complement of its basin of p

attraction has zero Lebesque measure (see Collet and

Eckmann [CE1], Proposition 11.5.7). On the other hand,

measures Vk do not converge as kk-*l to the smooth
kk'

invariant measure of F1 since the above periodic orbits

have only one point to the right of - and so all weak
2

limits of Vk have support in the interval [0,j]. Similar

examples can be constructed for Xko+XoAl with No

satisfying Assumption 2.1.

The maps Fk  do not necessarily have the shadowing

property for all pseudo-orbits. However one can obtain the

following result (see Katok and Kifer [KK], Lemma 2.3).

Lemma 2.1. Suppose that F satisfies Assumption 2.1

and let xo,---,X n be a e -pseudo-orbit of FX, L.e.,

(1.1.4) holds true with F = FX and dtst defined by (1.8).

There exists a constant C > 0 depending only on FX such

that if 0 ( 0/2 and

IX- 2 2Ce7 , k = O,---,n-1 (2.4)

then one can find a point y so that

dist(F y,xk) Ce - , k 0,-,n. (2.5)

Since F( ) = 0 then, of course, the maps F are

not expanding. However, Assumption 2.1 yields some

substitution for expanding which turns out to be sufficient

both for Lemma 2.1 and other aspects of our approach.

Lemma 2.2. Suppose that Fx satisfies Assumption

2.1. There exists 77 > 1 such that for any p > 0 one

can find an integer M > 0 so that
p

M
I(F, )' (x) r> provided min IF x - 1 p p (2.6)

0 i<M

,I

P'

0 06" PC XW_.A



p'= :MF = .M 7 '1 J' ~i,,,i . = , . .. *. ..o . -P~ -. .;w ':?:;;

and

I(F ),(x), proutded dist(F x,5 A) p (2.7)

for any x E [0,1] and n 1.

For the proof we refer the reader to Misiurewicz [Mi],

Theorem 1.3 and to Katok and Kifer (KK], Lemma 2.2.

Under Assumption 2.1 the map F. becomes expanding in

the sense that I(F )'(x)I grows exponentially fast in n

for points x whose orbit stay away from Y Indeed,
k 1 Fkx

suppose that F x x for all k = 0,1,--.,n. While F x
X 2

is not too close to 1 then the derivative grows
2

exponentially fast by (2.6). If for some k, IF x - 1
then

I(F. )'xl = 8XpI(FX)'x (2.8)

and

_k+l k 1,F( ) ) =40

(2.9) dist (Fk x, YX) dist(Fk x, FX(.!)) = 4Xp2

Thus in view of (2.2) and (2.9) in order to have another

1chance to get close to y the orbit must accumulate the

derivative of order p- 2 which according to (2.6) will take

of order log(-) steps. If £p = C1 log(-) is this

number of steps then I(F P +xI =I(Fk)xc P-

= I(F )xI C2 (el/cl) p which again leads to the

exponential growth.

Still, proceeding with our method one has to face

certain complications due to small derivatives of FA  near

1 Lemma 2.1 enables us to employ the linearization

procedure if we restrict ourselfs to paths of Xn which~n

Lwwwq' A-k -. -A -A Aju AA--



are e -pseudo-orbits staying outside of the
-r * 1

2Cal-neighborhood of the point . However, this will lead
1

to orbits of Fx which may approach - as close as
2

C(2e7+e1- ), and so the derivatives of Fk may be

sometimes that small. By this reason a direct counterpart

of Proposition 11.2.1 will not work here. The following

result proved in Appendix to Katok and Kifer [KK] saves the

situation.

Lemma 2.3. Suppose in addition to Assumption 1.1 that

for each x E [0,1] the number of points of discontinuit.

of rx(i) in f is bounded by a number N independent of

x and on each interval of continuity rx(i) is Lipschitz

continuous in i. For arbitrary points Xl,--,xn E [0,1]

let Oi,*-,en be independent random uartabLes with

adistribution functions P{e. ( a) = f r (if)df. Then there
-w x

exist C,K > 0 independent of Xl,--,Xn and n such

that for any nonzero numbers al,---,an the distribution

function of the random uariable

L a 1/2 ai( i - EOi)
l i~n 'Ii n

has the derivative, i.e., the probability density function,

satisfying

rlxn() Ce - I c'I
1 , n

where EO. is the expectation of .

We discussed here only few arguments involved in the

proof of Theorem 2.1 which is pretty long and can be found

in Katok and Kifer [KK].

Remark 2.2. One can adapt the arguments of Section

2.6 and prove Theorem 1.2 of the previous section also for

maps F. satisfying Assumption 2.1.

Remark 2.3. Another class of maps with a critical

point (and so not uniformly expanding) possessing

absolutely continuous invariant measures was studied by

Collet and Eckmann [CE2]. For instance, for a set of

A.



parameters having a positive Lebesque measure the one- p

parameter family of maps F : [0,1 ] [0,1] given by the

formula

1-21x - ii if IX - I - .-
F X = 1 2 -1i x -

l-X-(x ) if IX 2'1 X
12

0 < X < - satisfies the conditions of [CE2]. Collet [Col]2studied random perturbations of Boyarsky's type for this

class of maps employing the Frobenius-Perron operator

method described at the beginning of Section 1.1. It is

not difficult to adapt the machinery of Katok and Kifer

[KK] in order to prove Theorem 2.1 for this class of maps

employing results of Appendices A and E from Collet [Col] p

which actually provide necessary dynamical prerequisites

for our approach similar to Section 2 of Katok and Kifer

•KK . .

3. Lorenz's type models.

In this section we shall discuss random perturbations

of model dynamical systems which are believed to describe

main features of the Lorenz attractor (see Guckenheimer and

Holmes [GH] or Sparrow [Sp]).

In 1963 E. Lorenz [Lo] published a paper describing a

qualitative study by numerical integration of the following

three-dimensional system of ordinary differential equations

with three parameters a,r,b>O,

dx
dt =  (y-x)

dt rx- y -xz (3.1)dt"

dz xy - bzdt "

derived from a model of fluid convection. Computer

experiments indicated that for certain choice of parameters

ta,r, and b the flow F generated by (4.1) has an

attractor (called now Lorenz's) where orbits of Ft
.'

SL

_r~m'.,'v# 'w ..''.' ' ",',:...%''. ;.',' '.." .'., ." -.-.;,..-_- -- ..-._ ,,-..-.,r%-, .%.-.--
, .
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exhibit a chaotic behavior.

The divergence of the vector field (a(y-x), rx-y-xz,

xy-bz) equals -(a+l+b), and so Ft contracts the volume

by e- (a+l+b)t for t>0. Furthermore, consider the

Lyapunov function V(x,y,z) = rx 2+ay2 +a(z-2r)2 then

dV(F t(xy'z))t 2(rx2 +y 2+bz2-2brz) (3.2)
dt Ito +y -bz 32

Let c be the maximum of V in the bounded domain where

dVE- 0 . If 6 > 0 is small enough then it is easy to

see that all orbits of Ft eventually enter the bounded

ellipsoid I = ((x,y,z): V(x,y,z) c + 6). Thus we

conclude that all orbits tend towards a bounded set of zero

volume (see Sparrow [Sp], Appendix C).

Let Xt be diffusion random perturbations of the flow

Ft described in Example 11.1.3. For any p>0 we can

consider Markov chains Y6 '1 = XF which are random
n np

perturbations of F = F . In view of (3.2) it is easy to

see that conditions of Theorem 1.1.7 are satisfied for

Markov chains Y6'. Thus all their invariant measuresn
have support in 9 and when e -+ 0 then all weak limits

of these measures are supported by a bounded set of zero

volume. In particular, this is true for invariant measures

~iof diffusion processes Xt -

The most popular choice of parameters leading to what

is usually called the Lorenz attractor is a = 10, r = 28

and b = 8/3. The origin 0 is the stationary point of

the hyperbolic type for the system (3.1). It has the

two-dimensional stable manifold WS(o) and the

one-dimensional unstable manifold consisting of two

branches r1and r2 . The plane I = ((x,y,z): z = 27)

contains two more hyperbolic fixed points 01 and 02

which have one-dimensional stable manifolds which are lines



contained in 9 and two-dimensional unstable manifolds

transverse to ff.

Next, one considers the Poincare return map G of the

plane ff to itself. Namely, if v is a point on this

plane and the integral curve containing v goes downwards

when intersecting the plane ff at v then Gv is the

point of the next intersection of the integral curve with

ff. The map G is not defined on the intersection wS(o) n
T and G maps points approaching this intersection from

one side close to Q1 = F I n a while points approaching

WS(o) n T from another side are being mapped close to

Q2 = F 2 n T.
By a change of coordinates we can reduce the study to

the transformation G mapping the square S = ((x,y):

IxI 1, Y' 1) C TI into itself.

The right hand side curvilinear triangle is the image of

the top rectangle S1 = ((x,y): IxI 1, 0 < y iU and

the left hand side triangle is the image of the bottom

rectangle S2 = ((x,y): lxI 1, -1 y < 0).

Taking into account that the system (3.1) is invariant

with respect to the transformation x - -x, y -4 -y, z -+ z

we conclude that the map G can be represented by means of

2 function fl(xy), g1 (xy), f2 (xy) = -fl(-x,-y), and

g2 (x,y) = -gl(-x,-y) in the following way

G(xy) = (fi(xy),gi(xy)) if (x,y)E Sii =1,2 (3.3)

We assume that the functions f and g, (and so also f2

and g2 ) can be extended continuously to W = (IxI 1, y=0)

so that

lim (fi(x,y), gi(x,y)) = Qi' i = 1,2 (3.4)
y-#o

The map G has also two hyperbolic fixed points 0 1 and

0 2 One can proceed with the ergodic theory of the map G,



as well as, of the flow Ft  provided G satisfies some

hyperbolicity conditions. These were not yet established

rigorously. However the following conditions which

according to Afraimovich, Bykov, and Shilnikov [ABS] yield

the hyperbolicity of G were checked with the help of a

computer by Sinai and Vul [SV]. These conditions are

f [ag 1]-i 1 <

1g- af SIII < II'f11 (I(.5
-ayjJ Ty 1ax I'ax ai L

(1911>21I 8g1 - 8f[ 1 1 g1 1 11 1-gI11lI~~~73 (3 yi~i ~ a l ~axI

where Ilh(x,y)ll = sup lh(x,y)l.
x, yES

The Lorenz attractor for G is K = n GnS and the
0 n<-

corresponding attractor for the flow Ft can be written in

the form A = U FtK. The attractor K consists of
-W<t<3

smooth curves stretched along the y-axis. Bunimovich and

Sinai [BS] showed that there exists a G-invariant

probability measure v on K which is absolutely

continuous with respect to the Lebesgue measure generated

by the length on smooth curves forming K. This property

determines the measure v uniquely and this measure -

possesses essentially the same properties as the well known

Sinai-Bowen-Ruelle measure (see Bunimovich and Sinai [BS]

and Bunimovich [Bu]). The measure v generates the unique - -

t
Ft-invariant measure j on A such that

I( U FtF)
0 t~s p.
ds s-0 = v(r) (3.6)

for any Borel subset r C K whose distance from w (O) U

W S(o2) is positive. p

R,'O
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Theorem 3.1. Suppose that the conditions (3.5) hold

true. Then inuariant measures ji of diffusion random

perturbations X weakly converge to W as e -+ 0.
tThe proof of this result proceeds by the method of

[Ki]. In place of processes X6 we shall consider Markov
et

chains Y6 = X6 I n=0,1,2,-.- for some small but fixed rn nr'

> 0 which are random perturbations of the diffeomorphism

F = Fr. The number r is chosen so that an application of

Ft with Iti r does not destroy expanding and

contracting properties of the map G in the transverse and

parallel to WS (0) directions, respectively. Next, if we

consider the time n = n(E) of order (log )2 then we

may restrict our attention to a neighborhood U of the

attractor A.

Lemma 3.1. Let U be a sufficiently small"
neighborhood of the attractor A. There exists a constant

C > 0 such that if xO,xl,---,xn is a 6-pseudo-orbit of

F = F1 staying in U and satisfying

min dist(xi, W (0)) > C6 (3.7)
0 i~n i

then one can find a point y C U such that

max dist(xi,F y) Cn6 (3.8)0 i~n i

where W (0) in (3.7) denotes a connected component of the

stable manifold of 0 in U containing 0 and dtst here

is the Euclidean distance.

In order to obtain this kind of the shadowing one

combines the arguments leading to the shadowing for the

hyperbolic transformation G together with the

corresponding arguments valid in a neighborhood of the

hyperbolic fixed point 0. Namely, in the p-neighborhood of

le



S p

W (0) with p > 0 small but fixed the expanding and

contracting in transverse and parallel to WSo (0)

directions, respectively, is due to the presence of the

hyperbolic fixed point 0. Thus if the orbit of the flow

starts in the p/N-neighborhood of W S(0) with N large

5enough and exits from the p-neighborhood of W (0) then

expanding and contracting will be already accumulated

enough not to be destroyed until the orbit pierces S. For

orbits staying outside the p/N-neighborhood of W S(0) we

derive expanding and contracting properties along them from

the corresponding hyperbolicity properties of G which

follow from (3.5). The condition (3.7) enables us to avoid

difficulties connected with the discontinuity of G.

Next, employing the above arguments we derive

similarly to Lemma 1.2 the absolute continuity in the

unstable direction of probabilities that Y6 = X6  arrives
n nr

2
to a set for n(e) - (log e) steps along paths which do /4

5 t-not approach W (0) closer than i-. Since the flow Ft
sP

stretches in the transverse to W (0) direction then in

the same way as in Lemma 1.3 we conclude that for n >

log(-) and -r > 0 small enough Y6 may belong to the
n

-neighborhood of W S(0) with probability not exceeding

e After that we complete the proof of Theorem 3.1 in the
4,

same way as the proof of Theorem 1.1. We note that the
technical prerequisites for our method can be found in

Bunimovich and Sinai [BS] or easily derived from their

arguments.

Remark 3.1. One can generalize this approach in order N

to apply the method to situations where some kind of

hyperbolicity conditions holds true only for an appropriate

return map of a flow and not for the flow itself.

I
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